92
Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3
Li, Z., Wu, N., Meng, S., Wu, F., & Liu, T., (2020). Arbuscular mycorrhizal fungi (AMF)
enhance the tolerance of Euonymus maackii Rupr. at a moderate level of salinity. PLoS
One, 15, e0231497.
Lichtenthaler, H. K., (1998). The Stress Concept in Plants: An Introduction (Vol. 851, pp.
187–198). Annals of the New York Academy of Sciences.
Lindstrom, J. T., & Belanger, F. C., (1994). Purification and characterization of an endophytic
fungal proteinase that is abundantly expressed in the infected host grass. Plant. Physiol.,
106, 7–16.
Mahaffee, W. F., & Kloepper, J. W., (1997). Temporal changes in the bacterial communities
of soil, rhizosphere, and endorhiza associated with field-grown cucumber (Cucumis sativus
L.). Microbial. Ecol., 34, 210–223.
Majeed, A., Abbasi, M. K., Hameed, S., Imran, A., & Rahim, N., (2015). Isolation and
characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their
effect on plant growth promotion. Front. Microbiol., 6, 198.
Malinowski, C. P., & Beleskey, D. P., (2000). Adaptations of endophyte-infected cool-season
grasses to environmental stresses: Mechanisms of drought and mineral stress tolerance.
Crop. Sci., 40, 923–940.
Massad, T. J., Dyer, L. A., & Vega, C. G., (2012). Costs of defense and a test of the carbon–
nutrient balance and growth–differentiation balance hypotheses for two co-occurring
classes of plant defense. PLoS One, 7, e47554.
Mathur, S., & Jajoo, A., (2020). Arbuscular mycorrhizal fungi protect maize plants from
high temperature stress by regulating photosystem II heterogeneity. Ind. Crop. Prod., 143,
111934.
Mattos, K. A., Pádua, V. L. M., Romeiro, A., Hallack, L. F., Neves, B. C., Ulisses, T. M.,
Barros, C. F., et al., (2008). Endophytic colonization of rice (Oryza sativa L.) by the
diazotrophic bacterium Burkholderia kururiensis and its ability to enhance plant growth.
An. Acad. Bras Ciênc., 80, 477–493.
Maya, M. A., & Matsubara, Y. I., (2013). Influence of arbuscular mycorrhiza on the growth
and antioxidative activity in cyclamen under heat stress. Mycorrhiza, 23, 381–390.
Mayak, S., Tirosh, T., & Glick, B. R., (2004). Plant growth-promoting bacteria that confer
resistance to water stress in tomato and pepper. Plant Sci., 166, 525–530.
Mei, C., & Flinn, B. S., (2010). The use of beneficial microbial endophytes for plant biomass
and stress tolerance improvement. Recent Pat. Biotechnol., 4, 81–95.
Mongkolthanaruk, W., (2012). Classification of Bacillus beneficial substances related to
plants, humans and animals. J. Microbiol. Biotechnol., 22, 1597–1604.
Muhammad, H., Sumera, A. K., Abdul, L. K., Gauhar, R., Youn-Ha, K., Ilyas, I., Javid, H.,
Eun-Young, S., & In-Jung, L., (2010). Gibberellin production and plant growth promotion
from pure cultures of Cladosporium sp. MH-6 isolated from cucumber (Cucumis sativus
L.). Mycologia, 102(5), 989–995.
Nadeem, S. M., Maqshoof, A., Zahir, Z. A., Javaid, A., & Ashraf, M., (2013). The role
of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop
productivity under stressful environments. Biotechnol. Adv., 32, 429–448.
Nagata, S., Yamaji, K., Nomura, N., & Ishimoto, H., (2015). Root endophytes enhance stress-
tolerance of Cicuta virosa L. growing in a mining pond of eastern Japan. Plant. Spec. Biol.,
30, 116−125.